The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in Clostridium difficile.
نویسندگان
چکیده
The formation of spores is critical for the survival of Clostridium difficile outside the host gastrointestinal tract. Persistence of C. difficile spores greatly contributes to the spread of C. difficile infection (CDI), and the resistance of spores to antimicrobials facilitates the relapse of infection. Despite the importance of sporulation to C. difficile pathogenesis, the molecular mechanisms controlling spore formation are not well understood. The initiation of sporulation is known to be regulated through activation of the conserved transcription factor Spo0A. Multiple regulators influence Spo0A activation in other species; however, many of these factors are not conserved in C. difficile and few novel factors have been identified. Here, we investigated the function of a protein, CD1492, that is annotated as a kinase and was originally proposed to promote sporulation by directly phosphorylating Spo0A. We found that deletion of CD1492 resulted in increased sporulation, indicating that CD1492 is a negative regulator of sporulation. Accordingly, we observed increased transcription of Spo0A-dependent genes in the CD1492 mutant. Deletion of CD1492 also resulted in decreased toxin production in vitro and in decreased virulence in the hamster model of CDI. Further, the CD1492 mutant demonstrated effects on gene expression that are not associated with Spo0A activation, including lower sigD and rstA transcription, suggesting that this protein interacts with factors other than Spo0A. Altogether, the data indicate that CD1492 negatively affects sporulation and positively influences motility and virulence. These results provide further evidence that C. difficile sporulation is regulated differently from that of other endospore-forming species.
منابع مشابه
A novel regulator controls Clostridium difficile sporulation, motility and toxin production.
Clostridium difficile is an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which C. difficile initiates spore formation are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spore-forming bacteria. In this study, we show that disruption of the gen...
متن کاملConserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile.
The anaerobic gastrointestinal pathogen Clostridium difficile must form a metabolically dormant spore to survive in oxygenic environments and be transmitted from host to host. The regulatory factors by which C. difficile initiates and controls the early stages of sporulation in C. difficile are not highly conserved in other Clostridium or Bacillus species. Here, we investigated the role of two ...
متن کاملTigecycline suppresses toxin A and B production and sporulation in Clostridium difficile.
BACKGROUND Clostridium difficile infection (CDI) is mediated by potent extracellular toxins and is spread largely via bacterial spores. We and others have shown that some antibiotics stimulate C. difficile toxin production in a strain-specific manner; however, the effects of newer anti-C. difficile antibiotics on this process remain to be investigated. METHODS The effects of the protein synth...
متن کاملGlobal transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile
The catabolite control protein CcpA is a pleiotropic regulator that mediates the global transcriptional response to rapidly catabolizable carbohydrates, like glucose in Gram-positive bacteria. By whole transcriptome analyses, we characterized glucose-dependent and CcpA-dependent gene regulation in Clostridium difficile. About 18% of all C. difficile genes are regulated by glucose, for which 50%...
متن کاملInducible Expression of spo0A as a Universal Tool for Studying Sporulation in Clostridium difficile
Clostridium difficile remains a leading nosocomial pathogen, putting considerable strain on the healthcare system. The ability to form endospores, highly resistant to environmental insults, is key to its persistence and transmission. However, important differences exist between the sporulation pathways of C. difficile and the model Gram-positive organism Bacillus subtilis. Amongst the challenge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 84 12 شماره
صفحات -
تاریخ انتشار 2016